当前位置:首页 » 整改整治 » 开展数据治理

开展数据治理

发布时间: 2021-01-18 21:57:52

『壹』 电力企业如何做好数据治理

1.建立统一的数据标准。目前存在各业务部门标准不统一,部门之间数据标准矛盾或者相互混淆的情况,导致部门间数据交换,数据共享比较困难。建立统一的数据标准有助于对数据进行统一规范的管理,消除各部门间的数据壁垒,方便数据的共享,另外数据标准同样对业务流程的规范化有帮助作用。
2.提高数据质量。电力数据的采集和传输受到采集传感器的精度、稳定性,通讯设备和环境因素的影响较大,导致存在大量的空值和垃圾数据。可通过数据质量管理对电力数据进行质量检查,找出有问题的数据,通过数据清洗,问题整改,例外排查等一系列手段提高数据质量;另外还可以通过出具数据质检报告,数据质量绩效考核来督促各业务部门重视数据质量从而加强人员和业务的管理来提高数据质量。
3.数据资产管理。将经过处理的高质量数据资产统一管理,提供全生命周期的管理和数据安全保障。并可将数据资产进行分类和编目,方便数据的展示和数据共享,同时也为数据分析和数据挖掘(电力需求预测、电力系统优化等)打好基础。

亿信睿治是从元数据、主数据、数据标准、数据质量再到数据处理、数据资产、数据交换和数据安全,能够为企业提供一站式解决方案,从而打通数据治理全流程。从而完成企业对于数据治理的要求

『贰』 目前主流的数据治理平台有那些。

睿治数据治理平台是亿信华辰完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。
睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:
1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;
2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;
3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。

『叁』 企业怎样建立完整的数据治理体系

大数据智能时代,管理不再是传统的做法,一套完善的数据管理体系是企业长远要生存的必须择决。我们的生活已经离不开大数据,企业的数据管理不仅能提高员工的工作效率,提高员工的积极性,管理成本也是大大的减少,又能实现管理轻松,解放老板!

那怎么样才能建立和制定完善的大数据制度标准化?其实很简单,在原来的企业架构上导入数据积分管理即可,不必大刀阔斧的改革,方便省时。怎样做?首先根据每个不同部门、岗位、职责等制定标准的积分规则,如下图

在积分管理系统上根据分类,设置企业文化、工作职责、规章制度、能力等积分规则。例如企业文化规则的制定:

更多积分管理方案可私信免费获取《颠覆式企业员工数据化积分管理》一套

导入规则后,就可根据每个的员工的所作所为点击加入积分,自动录入自动汇总排名,每个员工有自己的账号,实时了解积分状况,起到相互攀比,相互激励的作用,积分跟升职、奖金、涨工资、福利待遇、评奖评优,甚至可以跟一切奖励机制挂勾。更可配合薪酬制度一起使用

A.将工资细分模块,根据目标完成度,发放相应工资,充分激励能者多劳,减少企业闲耗。

B.根据不同职位,设置不同比重的薪酬架构,最大程度激励员工积极性。

C.每个职位的绩效考核,必须有明确的数据指标作为标准,以结果为导向,员工的激励与压力并行。

当然薪酬设计要掌握平衡点,这个很重要。

积分有多样的换算方法,有按产值、按天数、按事件等换算方法,符合多样的企业使用。

员工的行动有数据指引,做的好的奖励积分,鼓励员工再接再厉,是认可员工的最有效做法,员工做错了实行扣分提醒教育,比扣钱更容易接受,毕竟积分可以再挣回来,积分越高,员工的成就感越强,地位越高,归属感越强,这是金钱无法做到的另一优点。数据化积分管理公示平台可对公司的运营状况了如指掌,支持移动端,实现轻松管理,解决了传统的人盯人管理的困境,解放老板却又业绩提升。时代变迁,各行各业的企业转变传统管理,引入数据化积分管理,利用积分激励员工争着做事、多做事,帮助公司有效管理!

『肆』 国内能做数据治理的公司,希望大家可以推荐一下,感谢!

国内能做数据治理的公司

数据治理构成了公司范围数据管理的基础,可以有效地使用可信赖的数据。有效的数据管理是一项需要集中控制机制的重要任务。

什么是数据治理?

数据治理包括管理和保护公司数据资产所需的人员,流程和技术,以保证通常可理解,正确,完整,可信,安全和可发现的公司数据。数据治理主要包括以下:

2.糟糕的数据治理是危险的

缺乏有效的数据治理是一个安全问题,原因有两个:与脏,非结构化数据和法规遵从性问题相关的外部安全风险。

错误的数据和结构错误的数据会带来安全风险,原因很简单,如果您的数据库中存在脏的非结构化数据,那么如何快速判断何时出现问题以及如何有效监控哪些数据存在风险?良好的数据治理工具和实践可以更轻松地监控整个数据库中发生的情况,并且可以更轻松地查看哪些区域可能存在风险。

法规遵从和数据治理日益成为一个热门话题。随着人们继续了解其个人数据的重要性,政府开始采取公平存储,保护和使用客户数据的方式。

以GDPR为例。该法规将于2018年初生效,使欧盟居民能够更好地控制其个人信息,包括着名的“被遗忘权”,使欧盟居民能够要求从商业数据库中删除所有数据。 (请注意,这适用于与欧盟居民开展业务的任何公司,因此该法规可以轻松跨越美国)。对于混乱的,未受管理的数据沼泽,可能无法保证在请求时删除关于特定个人的所有数据。这使您的公司面临极大的风险和可能的严厉罚款。

3.良好的数据治理提供了清晰度

花点时间想象一下完美数据的保证对您的业务意味着什么。有效的数据治理使数据通常清晰,标准化和准确,让您高枕无忧。这种影响在整个公司中产生了影响。

以下是此清晰度将提供的一些好处:

确保您的指标准确无误 - 您的KPI如何?

深入了解您最重要的指标可能是什么

对分析更有信心

未来会如何?

数据治理是当今数据驱动型公司的关键,而今天的公司究竟是不是想要数据驱动?我们现在知道为什么数据治理目前很重要,现在考虑公司在不久的将来可以从中受益的三个主要力量:物联网,人工智能和大数据。

所有这三种力量都通过大量数据为许多公司带来了巨大的希望,通过这些数据可以获得洞察力和智慧;但是,数据的涌入增加了 对有效数据治理计划的需求。如果公司没有领先于来自物联网,人工智能和大数据的脏数据,那么主要结果可能只是一个巨大的数据沼泽,而不是董事会成员所期望的智能和利润增加。

数据治理最重要的因素之一是与负责收集,管理和使用数据的所有团队和个人保持一致。确保每个人都参与进来,并且有明确的目标,明确定义的流程和明确的权限级别,以使一切顺利进行。数据治理的关键是有效的协作。正确的数据治理工具应该与这些原则齐头并进。确保您评估的任何工具都易于为业务和IT用户使用,实现跨团队的无缝协作,并且足够灵活,可以根据您不断变化的业务需求进行改进。

『伍』 国内能做数据治理的公司

亿信华辰,华为、普元、石竹、IBM、SAS、中翰软件、石化盈科
其中亿信华辰基于回13年的数据治理经答验,已形成一整套数据治理解决方案,通过元数据、主数据、数据质量、数据标准、数据资产、数据处理、数据交换、数据安全、数据生命周期九大功能模块的任意组合,满足所有客户的数据治理需求,实现数据价值的最大释放。目前已广泛应用于财政、税务、卫健委、农业、食品安全、安监、法检及政法、金融、企业等,为客户提供信息化顶层设计与规划咨询、应用软件开发、系统集成、运维和运营等全方位的专业服务

『陆』 如何把握数据治理项目启动的最佳时机

数据治理项目应抄该是计算机应用项目。要做他的最佳启动时机。这需要根据你数据统计情况来决定。你首先应该有一些基础数据。这些基础数据的来源必须是真实有效的。当然需求才是项目运行的动力。所以你必须对市场有一个正确的观察。有丰富的管理能力。

『柒』 如何构建数据治理模式中的职责体系

1 、随着大数据热潮的不断兴起,数据资产概念已经被越来越多的企业所接受,大部分企业开始重新审视自身所拥有的数据,对内加强数据对于公司业务模式创新、流程优化、精细化营销等场景下的应用,对外探索各种数据价值变现的途径,为公司在市场化竞争的环境下提升竞争力提供支撑和助力。在这个背景下,数据治理的概念也引起了越来越多单位的重视,特别是金融、通信和能源等国内信息化相对领先的行业,这些行业中的大部分单位已经把数据当做一项重要资产来进行管理,从组织、制度、流程和技术等多个方面入手展开数据的汇总、管理和应用的工作。
2、相关数据治理理论以及职责体系的定义
2.1 DAMA数据治理体系
国际数据管理协会DMBOK一书中对数据治理的定义如下:“数据治理是对数据资产管理行使权力和控制的活动集合(规划、监控和执行)。数据治理指导其他数据管理职能如何执行,是在数据管理之上的更高一层的规划和控制”,从中可以看到DMBOK把数据相关的活动划分为数据治理和数据管理两部分,其中数据治理重点关注于整体制度的规划、监控和执行,用于指导和规范数据管理工作的开展。而数据管理工作是针对数据运营和操作所展开的日常活动,例如:数据架构设计,数据标准和数据质量管理等等。
数据治理处于数据管理的核心位置,包括了数据战略、组织和角色、政策和标准等等,在组织和角色方面,DMBOK提出了数据治理的“三权分立”模式。数据治理包括立法职能(策略和标准)、司法职能(问题管理)和行政职能(管理、服务与合规):数据治理机构的职责包括设置策略、标准、架构和规程,以及解决数据相关问题。数据管理组织的职责包括:管理、监控和执行数据政策、标准和程序,协调、维护和实施数据架构。如图1所示。
在这个模式中,DMBOK强调数据治理的立法司法和执行之间的独立和相互制衡,这是数据治理模式三权分立中的关键点。DMBOK明确提出了首席数据官、数据治理委员会、数据治理办公室、数据管理管理专员等概念,对企业数据治理工作的开展起到了很大的推动作用。但是DMBOK对于三权分立模式如何在企业中落地实施着墨不多,这也需要根据企业规模、管理模式方面的特征来进行具体的落地实施。
2.2 DGI数据治理体系
数据治理研究所(DGI)提出了数据治理的简单定义和复杂定义。简单定义为,数据治理是对数据相关事务行使权力并进行决策的一系列活动。复杂定义为,数据治理是关于数据信息的决策权和责任制的体系,并按照共同约定的体系模型落地实施。该模型对数据信息的相关环境、人员、时间和方法、行动都进行严格、明确的定义,实现正确的人员在适当时间对合适环境中的相关数据,按照定义的方法采取必要的行动,确保数据满足规范要求。
在数据治理组织方面,DGI认为一个公司的数据治理组织主要有以下三部分组成:
(1)数据利益相关人:有可能影响数据或者被数据所影响的任何个人和团体,例如:数据架构团队、业务团队,DBA等等。
(2)数据治理办公室:数据治理日常运行的沟通、协调机构,需要推动相关制度的落实、监控日常工作开展情况,推动问题的解决等。
(3)数据管家团队:负责各自领域数据的管理工作,制定数据的业务规则,采集数据和应用数据来支持工作,并负责自身数据相关质量问题的解决。
2.3 非侵入式数据治理体系
Robert S.Seiner是国际数据治理领域的知名专家,根据对数据治理领域常见痛点的总结,结合自身数据治理经验的总结,提出了非侵入式数据治理模式《Non-invasive Data governance》,这种模式强调一种自下而上的数据治理方式,和DMBOK、DGI等方面的模式有显著区别,并在国际上有很大的影响力。
非侵入式数据治理模式的主要特点如下:
(1)数据管理专员是根据当前的工作职责而识别出来的,并对其工作职责进行规范化,而不是让他感觉到给他增加了新的工作任务。
(2)在现有的策略、流程和方法之上增加数据治理控制的功能,而不是引入新的流程或者方法。
(3)数据治理是统一支持企业范围内所有的数据集成、风险管理、商业智能和主数据管理等活动,而不是在各自的领域施加不同的控制。
(4)需要让高层领导者了解这是一种实用的、对现在没有改变的,高效的数据治理模式,可以协调数据所有者之间的关系,强调把数据当做企业资产进行管理的方式,而不是构建一套独立的数据治理机制。
(5)非侵入式数据治理模式的关键点是高效的沟通,并且能够充分利用已有的优势。
在这种模式下,整个数据相关的角色包括操作层的数据管理专员、战术层的主题域数据管理员、战术层的数据管理协调员、战略层的数据治理委员会、战略层的指导委员会、数据治理团队、数据治理合作伙伴等七类角色。
这些组织角色的设置和DMBOK中的设置有相似之处,但是在非侵入式数据治理体系中更加强调这些角色的建立是根据其当前工作职责的识别来制定的,不是新增或者重新招聘,这些角色中除了数据治理团队之外,其他角色都是兼职人员。
3 实践中的数据治理模式以及职责体系
数据治理相关理论对数据治理相关的职责体系进行了描述,但是企业应该如何构建职责体系没有涉及,在实际的应用场景中,特别是国内的企事业单位,大部分都是自上而下的方式来构建各自的数据治理职责体系,更多的是参考DAMA数据治理体系中的结构设计,对于非侵入式数据治理体系这种模式国内的实践案例不多。
数据治理职责体系在国内企业中主要存在两种类型四种模式:
(1)实体组织类型:独立数据管理组织模式,IT部门下属数据管理组织模式。
(2)虚拟组织类型:IT部门牵头的虚拟数据治理组织,业务部门牵头的虚拟数据治理组织。
3.1 独立的实体组织
独立的数据管理组织模式是把数据业务化的一种方式,针对数据这一企业资产设立独立的部门来集中进行数据资产的运营和管理。这种模式是完全脱离IT部门再重新建立一个独立的数据管理部门,统一负责数据架构、数据标准、数据质量和安全等方面的管理,并且对IT部门建设项目中的数据需求、设计和变更进行管理,确保新建项目中能够满足公司数据管理方面的要求。同时,有的公司也会把数据分析、数据运营变现的工作放在数据管理部,从而可以把数据管理部门从成本中心转变为利润中心,实现从数据到利润的变现。
这种模式强调数据管理部和技术部之间的平衡,有利于制定独立的数据管理政策和保证相关政策的落地实施,同时明确了公司数据管理运营权限的归属部门,有利于打破数据的部门壁垒,可以促进数据价值的发挥。同时,由于数据管理部门不仅仅是进行数据管理,同时也可以进行数据分析和变现的工作,业务价值比较容易体现,对于提升自身数据团队人员的积极也有很大帮助。
3.2 IT下属的实体组织
由于数据是信息系统的附属物,随着信息系统建设的逐渐成熟和稳定,很多公司为把信息化的重点逐渐转移到数据的管理和分析应用等方面,而信息科技部门往往被认为是最了解数据的部门,因此很多公司会在信息科技部门下面成立独立的团队来开展数据管理的工作。这种模式很多的是问题驱动式的,由于数据分析应用过程中面临的数据问题越来越多,迫切需要进行管理,而数据在公司内部的战略位置还没有非常高,所以会选择在IT部门下设独立的数据管理部门,在制定数据管理政策和标准的同时,推动数据质量问题的处理,可能还会承担数据维护的工作。
这种模式下数据管理部的人员出自于信息科技部门,对信息系统就非常熟悉,了解存在的数据问题,和项目人员的沟通交流很方便,相互之间也很容易协作。但是,经常会出现以技术的视角来考虑数据管理的问题,很多数据政策、标准的落地实施常常会妥协于项目实施时间、成本等方面的约束。
3.3 IT牵头的虚拟组织
由于成立实体的数据管理团队对组织架构的冲击比较大,特别是国内的央企和行政事业单位,因此成立虚拟的数据管理组织就成为很多企业采取的模式。信息技术部门往往会极力推动数据治理组织的建设,希望通过公司高层领导的支持,加强公司业务部门在数据管理工作过程中的参与度。而由于IT部门更了解信息系统,更了解技术,理所当然的就成立了由IT部门牵头的、各业务部门参与的、虚拟的数据治理组织。这种模式会参考DAMA数据治理组织的模式,设置数据治理委员会、数据治理办公室,业务数据管理员等架构模式,其中数据治理政策的制定、推动实施、监控和协调等主要工作会落实在数据治理办公室,数据治理办公室由IT部门负责落实和管理,在IT部门中有可能会指定全职的人员来进行协调和管理的工作,其他的大部分人员都是兼职的。
这种模式的优点就是对组织架构的冲击比较小,建立成本较小。虚拟组织很容易建立,但是推动数据治理相关制度具体落地执行的难度非常大,业务部门的参与度不高,数据治理的业务价值也不容易体现,因此针对这种模式,建议数据管理部能设置专职的数据管理角色,业务部门的工作职责要能够落实到岗位描述中。
3.4 业务牵头的虚拟组织
这种模式是对第三种模式的演进,由于国内很多企业IT部门都是相对弱势的部门,话语权不强,导致数据治理的制度、标准很难落实,为此,很多企业建立数据治理组织的时候会选择一个强势的业务部门牵头,IT部门配合的模式,例如银行的风险管理部门、财务部门等等。
这种模式下由于业务部门对于数据的需求和痛点很了解,比较容易体现数据治理的业务价值,同时,由于部门话语权比较强,相关的政策、标准和措施比较容易落地执行。缺点就是牵头业务部门需要平衡本职业务工作和数据治理工作的投入,同时,由于对信息技术和数据没有那么了解,往往需要增加专职的数据管理员。
4 云南电网数据治理职责体系实践
云南电网数据治理组织采用IT牵头的虚拟组织形式。数据治理委员会职责由网络与信息安全领导小组履行,数据治理管理办公室职责由网络与信息安全领导小组办公室履行。在信息部下设置数据治理业务专员,在信息中心下设置数据治理技术专员,其他各业务部门设置数据联络员。
4.1 数据治理委员会工作职责
在数据战略层面:主要负责监督数据战略和数据政策的实施和执行情况,监控数据风险。
在数据管理层面:主要负责公司数据战略的目标和策略、数据体系规划、数据政策制度、数据质量、数据标准、数据需求等数据领域的重大事项审批以及监督评价。
具体职责包括:
(1)对重大数据治理相关事项进行决策,监督数据治理相关工作的开展;
(2)审批公司数据治理工作考评方案,并监督考评结果;
(3)定期向董事会报告公司数据治理相关工作情况。
4.2 数据治理管理办公室工作职责
数据治理管理办公室是公司数据治理工作的直接领导与组织部门,负责数据治理相关各领域、各环节的决策支持、监督执行和组织落实。其主要职责包括落实数据治理决策层分配的工作,制定并审议数据治理相关工作流程和各项制度,组织推进公司各部门及基层单位开展数据治理工作。具体职责包括:
(1)审议数据治理工作相关的制度和细则及工作流程;
(2)指导数据标准的编制、执行、变更、复审的协调、决策等管理工作,审查数据标准相关方案,审议数据标准相关的重大事项等;
(3)定期向数据治理决策层汇报公司数据治理工作情况;
(4)负责审议并指导数据治理执行层工作并听取汇报;
(5)指导数据治理工作考评方案制定,并检查数据治理工作评结果。

『捌』 如何开展企业ERP数据治理工作

在企业ERP数据治理这个范畴上,我们应该首先解决的是企业对其数据的了解和认知。
由于IT系统数据模型反映了应用关系型数据库在数据存储及数据结构,是元数据的主要组成部分。在今天关系型数据库仍然大行其道的当下,一种清晰并且与系统应用实践高度一致的数据模型可以促进了各种应用数据的管理、基于角色的有价值数据资产访问以及持续的数据集成。并且强化了元数据管理,使组织理解它们所拥有的数据,以及数据与业务流程之间的关系,不管数据来自于什么数据,什么样的产品平台以及任何地方。
因此,数据模型梳理,也正是传统企业必需一个自下而上的数据治理方法之一。
经过完整数据模型梳理可以预期可以达到什么样的效果:
●克服黑暗数据现象,通过清晰的元数据和数据模型管理让企业可以真正理解和运用自身的数据,并不断扩大应用和分析数据的范围和规模。
●明确数据含义,了解数据访问与业务流程之间的关系,帮助企业业务使用者(不仅包括IT)可以使用数据和应用数据帮助他们更好完成工作,推动全面数据化运营。
●连接和映射更多数据,充分发掘现有的数据之间的关系,扩大数据规模效应,让数据可以充分发挥其作用和价值。
●为其他的数据资产管理活动,包括数据质量、数据生命周期管理、数据操作、数据安全、主数据管理等提供一个高质量的基础。
其实,在企业数据仓库领域中,元数据管理正是用来解决这个问题的但由于种种原因,实际上传统企业中元数据管理也不尽如人意,出现元数据与实际环境严重脱节,不能反映其真实数据架构等现象。

『玖』 金融数据治理的问题与对策

(1)缺少数据治理企业文化
银行数据治理工作不是个别部门或少数人员能够妥善完成的,而是需要各部门之间、各层级之间的相互支持与协作,尤其需要加强科技部门与业务部门之间的合作。因此,在数据资产被高度认可的今天,数据治理不仅需要作为银行的一项职能工作在企业内贯彻执行,而应该建立一种以数据资产为导向的企业文化,将数据治理与信息科技治理、公司治理有机地结合起来。
(2)基础数据质量的改进刻不容缓
数据质量的改进是一项长期的任务,需要从文化、组织、制度、流程和质量检查管理工具等多个层面持续改进,并依靠数据认责机制,确保数据质量问题能够得以快速有效的解决;数据不一致需要通过推进数据标准化进行系统问协调,也需要建设统一的可信数据源。
(3)没有完善的组织和制度,缺乏有效的管理机制
目前使用数据的部门由于具有明确的、迫切的数据需求,同时面临着内外部的多种压力,成为处理问题的主要推动者,没有一个统一的数据管理部门,当问题涉及跨系统、跨条线时,沟通成本较高、协调难度也较大,问题难以得到彻底解决。
健全的数据治理组织机制是全面开展数据治理工作的基础。由专业的业务和技术人员组成的数据治理组织将承担数据管理者的职责,负责落实全行数据治理的工作,同时建立决策、沟通、监控、考核的机制,创造全行数据治理文化,有效地解决银行数据的责、权、利的问题。
(4)缺乏完善的系统支撑和技术手段
银行系统数据量庞大,如果数据治理工作不依靠技术手段,没有相应的平台工具支撑,仅依靠手工处理,难以将数据治理工作做好,因此,需要先进的技术手段、配套的系统支撑数据治理工具高效有序的开展。

亿信华辰在数据治理领域也持续深耕,从数据质量管理平台、元数据管理平台,到发布智能数据治理平台-睿治,实现了数据治理全场景覆盖,包含九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,所有模块可自由组合,并支持本地或云上使用,全面满足客户各类治理需求。

热点内容
影视转载限制分钟 发布:2024-08-19 09:13:14 浏览:319
韩国电影伤口上纹身找心里辅导 发布:2024-08-19 09:07:27 浏览:156
韩国电影集合3小时 发布:2024-08-19 08:36:11 浏览:783
有母乳场景的电影 发布:2024-08-19 08:32:55 浏览:451
我准备再看一场电影英语 发布:2024-08-19 08:14:08 浏览:996
奥迪a8电影叫什么三个女救人 发布:2024-08-19 07:56:14 浏览:513
邱淑芬风月片全部 发布:2024-08-19 07:53:22 浏览:341
善良妈妈的朋友李采潭 发布:2024-08-19 07:33:09 浏览:760
哪里还可以看查理九世 发布:2024-08-19 07:29:07 浏览:143
看电影需要多少帧数 发布:2024-08-19 07:23:14 浏览:121