ETL治理
『壹』 前台报表开发(比如cognos)与etl(informatica) 哪个好 更有发展
有没有发展不是看工具的,而且这2个不是一个领域的工具,没有可比性。回
但是informatica不等于etl,etl只是informatica的基本功答能,informatica 还有丰富的数据治理解决方案以及相应的工具,如数据质量管理,主数据管理,元数据管理……
无论哪一条路,只要更努力就会更有发展。
『贰』 常用的大数据分析软件有哪些
数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、内数据管理、数据计算容、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
『叁』 大数据解决方案选择哪一家
很多企业都开始数据治理,并探索不同工具和方法来实现。然而,企业往往又会被不同的解决方案所困惑。
那么,企业应该如何选择大数据解决方案呢?主要考虑以下6个重要方面:
1、分析蓝图
无论是从哪一类具体的分析需求开始,对于分析的构建,都需要设想整个蓝图。
在构建企业分析时,有三个维度是很重要的:业务链、产业链、面向对象,不同的人员在不同的业态下除了配置报表外,在数据分析阶段还可以设置主题分析的内容,自上而下的目标监控,自下而上的原因反馈。
为了更好地提升企业级能力,在商业分析到一定阶段后,要做全价值链分析,同时,针对多业态的产业链,要做统一的价值体系。
『肆』 如何监控数据仓库中数据质量问题的
亿信数据质量管理平台(EsDataClean)领先业界的数据质量评估体系,包含丰富的质量评价方法,并且易于内扩展容。系统支持数十种质量评价算法技术,满足业务系统运行、数据中心建设、数据治理过程中各类规则的定义,并可实现跨数据源的对比分析;支持通过XML扩展,可完全适应企业未来的数据质量管理需求的变化
『伍』 大数据 对社会有什么作用
主要由以下三点作用:
一、对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。
云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
二、大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。
在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
三、大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。
(5)ETL治理扩展阅读
大数据时代带来的机遇:
1、社会治理是对社会的经济、政治和文化等事务进行的组织、协调、指导、规范、监督的过程。它涉及合理有效配置社会资源,比如提供教育、文化、卫生、体育、社会保障等社会公共服务和公共产品,保障社会公平与公正;涉及通过行政及司法手段保障社会安全和社会稳定。
2、创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系、维护社会秩序所面临的一项重大战略任务。
3、大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为社会转型期的社会治理创新带来了机遇。
『陆』 如何加强数据管理,分析和应用,助推业务发展
底层数据仓来库,上层自做好数据分析和展示,同时做好数据治理。
最重要的一点,数据管理一定要支撑业务,从业务出发,为业务创造价值,否则业务部门不配合,很难进行下去。比如通过数据仓库提高业务系统的查询效率、通过报表平台让业务部门不再频繁的进行各种报表计算加工等等,从一点点小事做起,让业务部门认识到数据管理可以帮他们减轻负担、提高效率,后面的事情就好办了。
具体应用上,可以采用数据仓库+BI的方式进行,选择好ETL工具,推荐Kettle、HaoheDI做底层ed数据整合。
『柒』 ETL 职业规划
不知道什么规划,先做ETL,然后深入了解建立数仓的整体架构,了解后学习建模,然后这就好多年过去了。。。
『捌』 数据分析和数据挖掘的区别是什么如何做好数据挖掘
简单来讲,数据挖掘,就是把数据找出来,数据分析呢,就是针对挖掘出来的数据进行处理。数据中台是集数据挖掘和数据分析、数据呈现为一体,打破了传统的数仓还有数据中心,并且在数仓模型的设计上也是一脉传承,之所以我们现在处处推崇数据中台建设及应用,一个是因为数据中台确实有过人之处,另一个是这套模型在阿里体现了巨大的应用价值。数据中台策略中的几个过人之处。
第一,数据汇聚,承上启下
数据中台策略的基本理念是,将所有的数据汇聚到数据中台,以后的每个数据应用(无论是指标和分析类的,还是画像类和大数据类的)统统从数据中台获取数据,如果数据中台没有,那么数据中台就负责把数据找来,如果数据中台找不来,就说明当前真没有这个数据,数据应用也就无从展开。相对而言,数据中台策略中更加强调数据的“全”以及数据中台组织与数据应用组织之间的协作关系,从设计、组织、建设、流程角度保障了模式的落地。
第二,纵观大局,推动全局
数据业务在企业中应当是一个完整业务,是一个亟需提高定位的业务,是企业的战略业务。所以数据中台策略应当对应企业的数据战略,并提供更有力的支撑,而不是仅仅停留在是把数据找到,把数据清洗了,把数据算出来。
第三、技术升级、应用便捷
目前业内比较典型的就是阿里云数加平台,数加平台基本让数据开发者能够像使用传统数据库一样的使用大数据平台了,所有操作方式都是通过可视化界面进行,大部分的开发都是通过SQL语句来实现。数据中台在与数加产品功能对比上不分伯仲,同时又基于私有云大数据应用的特点定制开发了诸多功能以及数据治理模块用以推动企业整体数据化进程。