数据标准化治理
① 数据标准化处理
正向和负向指标是同时衡量数据库的标准,
故而需要放过来
这个是标准
是原则与科学问题
② 如何在excel中数据标准化处理
数据标准化处理方法:
第一步:求出各变量(指标)的算术平均值(数学期望)内xi和标准差si ;
第二容步:进行标准化处理:
xij¢=(xij-xi)/si
其中:xij¢为标准化后的变量值;xij为实际变量值。
第三步:将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平
③ 在数据处理时,为什么要进行标准化处理
数据标准化主来要功能就是消除变自量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择.
④ 如何对数据进行标准化处理
建议来使用SPSS软件,具体方法源如下:
1.打开spss软件,然后将界面切换到变量视图。在编辑列中创建观察指标和类型。图中示例创建两个指标,一个作为自变量,另一个作为因变量,分别是gdd和城市化水平,代表人均gdp和城市化水平。
⑤ 指标数据标准化处理
各评价指标由于各自量纲的不同,并且指标间数值差异较大,要使指标间能够直接进行比较,要对各类指标进行标准化处理,消除量纲差别,最后将得到值域为(0,1),而且极性一致的数值。对于单因素定性指标按照质量等级赋予离散代数值;对于连续性变化的定量指标,采用相应质量等级的指标范围中值作为标准化指数的基数。
选择合适的标准化方法应坚持标准化方法的比较原则,即同一指标内部相对差距不变原则、不同指标间的相对差距不确定原则、标准化后极大值相等原则。按照上述原则,指标数据的标准化处理方法可划分为线性标准化和非线性标准化两大类,具体方法有:初值化变换、均值化变换、极值化变换、标准差变换等,本书采用线性标准化极值化变换方法,分析调整了标准化计算公式,将原始数据计算处理后得到新的均一化数列。设现状原始数据为Yk,标准化后的现状值为Xk,对指标体系中的每一项评价指标数据划出最大值(Ymax)和最小值(Ymin),按照质量等级由优等到差等,标准化指数升高的原则,设定差等级标准化指数最高X=1.00,则标准化计算公式:
正向指标:
基坑降水工程的环境效应与评价方法
反向指标:
基坑降水工程的环境效应与评价方法
经验证符合指标标准化的三大原则。表3.1所示为指标量化分级及标准化指数。
表3.1 基坑降水环境评价指标量化分级及标准化指数
⑥ 如何用excel对数据进行标准化处理
如何用SPSS对数据进行标准化处理?
SPSS统计分析软件是常用的数据分析工具,这里是一篇 SPSS案例分析。
---------------------------------------------------------------
进行多元统计分析时,我们往往要收集不同量纲的数据,比如销售总额(万元),利润率(百分数)。这表现为变量在数量级和计量单位上的差别,从而使得各个变量之间不具有综合性,而多元分析方法大多对变量要特殊的要求,比如符合正态分布或者变量之间具有可比性。这时就必须采用某种方法对各变量数值进行标准化处理,或者叫无量纲化处理,解决各数值不具综合性的问题。
spss提供了很方便的数据标准化方法,这里只介绍Z标准化方法。即每一变量值与其平均值之差除以该变量的标准差。无量纲化后各变量的平均值为0,标准差为1,从而消除量纲和数量级的影响。该方法是目前多变量综合分析中使用最多的一种方法。在原始数据呈正态分布的情况下,利用该方法进行数据无量纲处理是较合理的。
spss的实现步骤:
【1】分析——描述统计——描述
【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。
【3】返回SPSS的“数据视图”,在原始变量的最后多了一列Z开头的新变量,这个变量就是标准化后的变量了。基于此字段可以做其他分析。
⑦ 为什么要对数据进行标准化处理
数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,内可以举个简单的容例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择.
⑧ 数据标准化的几种方法
在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。
一、Min-max 标准化
min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间[0,1]中的值x',其公式为:
新数据=(原数据-极小值)/(极大值-极小值)
二、z-score 标准化
这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x'。
z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
新数据=(原数据-均值)/标准差
spss默认的标准化方法就是z-score标准化。
用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。步骤如下:1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;2.进行标准化处理:zij=(xij-xi)/si其中:zij为标准化后的变量值;xij为实际变量值。3.将逆指标前的正负号对调。标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。
三、Decimal scaling小数定标标准化
这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。将属性A的原始值x使用decimal scaling标准化到x'的计算方法是:
x'=x/(10^j)
其中,j是满足条件的最小整数。
例如 假定A的值由-986到917,A的最大绝对值为986,为使用小数定标标准化,我们用1000(即,j=3)除以每个值,这样,-986被规范化为-0.986。
注意,标准化会对原始数据做出改变,因此需要保存所使用的标准化方法的参数,以便对后续的数据进行统一的标准化。
除了上面提到的数据标准化外还有对数Logistic模式、模糊量化模式等等:
对数Logistic模式:新数据=1/(1+e^(-原数据))
模糊量化模式:新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2) ] X为原数据
⑨ 数据标准化是怎样处理的,就是数据是怎样被标准化的标准化能起到什么作用
命题的面太泛复了。。肯定你忘制了说明是什么方面什么技术下的数据标准化。。
标准化就是有标准可依。
有国际标准,比如ISO C++2003
有国家标准,比如GB2312
有行业标准,比如IEEE854
有企业组织标准,比如JSR-75
没有标准,自己就写个标准,发表出来,叫公开标准
给自己的数据找到相关的标准,按标准去读写、输入输出、交换,就做到标准化了
⑩ 企业怎么做好大数据标准化管理呢
企业怎么来做好大数据标准化管理自:
数据的标准化工作要着眼于企业信息系统的整体规划和应用方向和需求,必须做到标准、统一、一致。
数据标准化问题有共性也有个性,但必须掌握一个原则。企业数据的标准化,需要像制定企业管理制度一样制定企业数据标准文件,以规范和指导企业开展相关工作。