開展數據治理
『壹』 電力企業如何做好數據治理
1.建立統一的數據標准。目前存在各業務部門標准不統一,部門之間數據標准矛盾或者相互混淆的情況,導致部門間數據交換,數據共享比較困難。建立統一的數據標准有助於對數據進行統一規范的管理,消除各部門間的數據壁壘,方便數據的共享,另外數據標准同樣對業務流程的規范化有幫助作用。
2.提高數據質量。電力數據的採集和傳輸受到採集感測器的精度、穩定性,通訊設備和環境因素的影響較大,導致存在大量的空值和垃圾數據。可通過數據質量管理對電力數據進行質量檢查,找出有問題的數據,通過數據清洗,問題整改,例外排查等一系列手段提高數據質量;另外還可以通過出具數據質檢報告,數據質量績效考核來督促各業務部門重視數據質量從而加強人員和業務的管理來提高數據質量。
3.數據資產管理。將經過處理的高質量數據資產統一管理,提供全生命周期的管理和數據安全保障。並可將數據資產進行分類和編目,方便數據的展示和數據共享,同時也為數據分析和數據挖掘(電力需求預測、電力系統優化等)打好基礎。
億信睿治是從元數據、主數據、數據標准、數據質量再到數據處理、數據資產、數據交換和數據安全,能夠為企業提供一站式解決方案,從而打通數據治理全流程。從而完成企業對於數據治理的要求
『貳』 目前主流的數據治理平台有那些。
睿治數據治理平台是億信華辰完全自主研發的、開創性的、一站式綜合數據治理整體解決方案。睿治是全國唯一實現了數據治理場景全覆蓋的突破性產品,九大核心模塊:元數據、數據標准、數據質量、主數據、數據資產、數據安全、數據交換、數據處理、數據生命周期等,以創新的方式保證了企業的業務數據在採集、匯總、轉換、存儲、應用整個過程中的完整性、准確性、一致性和時效性,全面為客戶量身打造符合自身特徵的數據治理體系。
睿治始終站在國內頂尖梯隊,廣泛應用了MQ、分布式計算、zookeeper等最新技術。同時引領國內行業發展趨勢:
1、數據質量自動探查,內置常規數理統計演算法支持綁定機器學習演算法;
2、數據關系智能構建,基於存儲過程、sql、資料庫定義,自動理解數據之間的關系;
3、資產目錄主動感知,活化更新等先進技術,確保成為當之無愧的領頭羊。
『叄』 企業怎樣建立完整的數據治理體系
大數據智能時代,管理不再是傳統的做法,一套完善的數據管理體系是企業長遠要生存的必須擇決。我們的生活已經離不開大數據,企業的數據管理不僅能提高員工的工作效率,提高員工的積極性,管理成本也是大大的減少,又能實現管理輕松,解放老闆!
那怎麼樣才能建立和制定完善的大數據制度標准化?其實很簡單,在原來的企業架構上導入數據積分管理即可,不必大刀闊斧的改革,方便省時。怎樣做?首先根據每個不同部門、崗位、職責等制定標準的積分規則,如下圖
在積分管理系統上根據分類,設置企業文化、工作職責、規章制度、能力等積分規則。例如企業文化規則的制定:
更多積分管理方案可私信免費獲取《顛覆式企業員工數據化積分管理》一套
導入規則後,就可根據每個的員工的所作所為點擊加入積分,自動錄入自動匯總排名,每個員工有自己的賬號,實時了解積分狀況,起到相互攀比,相互激勵的作用,積分跟升職、獎金、漲工資、福利待遇、評獎評優,甚至可以跟一切獎勵機制掛勾。更可配合薪酬制度一起使用
A.將工資細分模塊,根據目標完成度,發放相應工資,充分激勵能者多勞,減少企業閑耗。
B.根據不同職位,設置不同比重的薪酬架構,最大程度激勵員工積極性。
C.每個職位的績效考核,必須有明確的數據指標作為標准,以結果為導向,員工的激勵與壓力並行。
當然薪酬設計要掌握平衡點,這個很重要。
積分有多樣的換算方法,有按產值、按天數、按事件等換算方法,符合多樣的企業使用。
員工的行動有數據指引,做的好的獎勵積分,鼓勵員工再接再厲,是認可員工的最有效做法,員工做錯了實行扣分提醒教育,比扣錢更容易接受,畢竟積分可以再掙回來,積分越高,員工的成就感越強,地位越高,歸屬感越強,這是金錢無法做到的另一優點。數據化積分管理公示平台可對公司的運營狀況了如指掌,支持移動端,實現輕松管理,解決了傳統的人盯人管理的困境,解放老闆卻又業績提升。時代變遷,各行各業的企業轉變傳統管理,引入數據化積分管理,利用積分激勵員工爭著做事、多做事,幫助公司有效管理!
『肆』 國內能做數據治理的公司,希望大家可以推薦一下,感謝!
國內能做數據治理的公司
數據治理構成了公司范圍數據管理的基礎,可以有效地使用可信賴的數據。有效的數據管理是一項需要集中控制機制的重要任務。
什麼是數據治理?
數據治理包括管理和保護公司數據資產所需的人員,流程和技術,以保證通常可理解,正確,完整,可信,安全和可發現的公司數據。數據治理主要包括以下:
2.糟糕的數據治理是危險的
缺乏有效的數據治理是一個安全問題,原因有兩個:與臟,非結構化數據和法規遵從性問題相關的外部安全風險。
錯誤的數據和結構錯誤的數據會帶來安全風險,原因很簡單,如果您的資料庫中存在臟的非結構化數據,那麼如何快速判斷何時出現問題以及如何有效監控哪些數據存在風險?良好的數據治理工具和實踐可以更輕松地監控整個資料庫中發生的情況,並且可以更輕松地查看哪些區域可能存在風險。
法規遵從和數據治理日益成為一個熱門話題。隨著人們繼續了解其個人數據的重要性,政府開始採取公平存儲,保護和使用客戶數據的方式。
以GDPR為例。該法規將於2018年初生效,使歐盟居民能夠更好地控制其個人信息,包括著名的「被遺忘權」,使歐盟居民能夠要求從商業資料庫中刪除所有數據。 (請注意,這適用於與歐盟居民開展業務的任何公司,因此該法規可以輕松跨越美國)。對於混亂的,未受管理的數據沼澤,可能無法保證在請求時刪除關於特定個人的所有數據。這使您的公司面臨極大的風險和可能的嚴厲罰款。
3.良好的數據治理提供了清晰度
花點時間想像一下完美數據的保證對您的業務意味著什麼。有效的數據治理使數據通常清晰,標准化和准確,讓您高枕無憂。這種影響在整個公司中產生了影響。
以下是此清晰度將提供的一些好處:
確保您的指標准確無誤 - 您的KPI如何?
深入了解您最重要的指標可能是什麼
對分析更有信心
未來會如何?
數據治理是當今數據驅動型公司的關鍵,而今天的公司究竟是不是想要數據驅動?我們現在知道為什麼數據治理目前很重要,現在考慮公司在不久的將來可以從中受益的三個主要力量:物聯網,人工智慧和大數據。
所有這三種力量都通過大量數據為許多公司帶來了巨大的希望,通過這些數據可以獲得洞察力和智慧;但是,數據的湧入增加了 對有效數據治理計劃的需求。如果公司沒有領先於來自物聯網,人工智慧和大數據的臟數據,那麼主要結果可能只是一個巨大的數據沼澤,而不是董事會成員所期望的智能和利潤增加。
數據治理最重要的因素之一是與負責收集,管理和使用數據的所有團隊和個人保持一致。確保每個人都參與進來,並且有明確的目標,明確定義的流程和明確的許可權級別,以使一切順利進行。數據治理的關鍵是有效的協作。正確的數據治理工具應該與這些原則齊頭並進。確保您評估的任何工具都易於為業務和IT用戶使用,實現跨團隊的無縫協作,並且足夠靈活,可以根據您不斷變化的業務需求進行改進。
『伍』 國內能做數據治理的公司
億信華辰,華為、普元、石竹、IBM、SAS、中翰軟體、石化盈科
其中億信華辰基於回13年的數據治理經答驗,已形成一整套數據治理解決方案,通過元數據、主數據、數據質量、數據標准、數據資產、數據處理、數據交換、數據安全、數據生命周期九大功能模塊的任意組合,滿足所有客戶的數據治理需求,實現數據價值的最大釋放。目前已廣泛應用於財政、稅務、衛健委、農業、食品安全、安監、法檢及政法、金融、企業等,為客戶提供信息化頂層設計與規劃咨詢、應用軟體開發、系統集成、運維和運營等全方位的專業服務。
『陸』 如何把握數據治理項目啟動的最佳時機
數據治理項目應抄該是計算機應用項目。要做他的最佳啟動時機。這需要根據你數據統計情況來決定。你首先應該有一些基礎數據。這些基礎數據的來源必須是真實有效的。當然需求才是項目運行的動力。所以你必須對市場有一個正確的觀察。有豐富的管理能力。
『柒』 如何構建數據治理模式中的職責體系
1 、隨著大數據熱潮的不斷興起,數據資產概念已經被越來越多的企業所接受,大部分企業開始重新審視自身所擁有的數據,對內加強數據對於公司業務模式創新、流程優化、精細化營銷等場景下的應用,對外探索各種數據價值變現的途徑,為公司在市場化競爭的環境下提升競爭力提供支撐和助力。在這個背景下,數據治理的概念也引起了越來越多單位的重視,特別是金融、通信和能源等國內信息化相對領先的行業,這些行業中的大部分單位已經把數據當做一項重要資產來進行管理,從組織、制度、流程和技術等多個方面入手展開數據的匯總、管理和應用的工作。
2、相關數據治理理論以及職責體系的定義
2.1 DAMA數據治理體系
國際數據管理協會DMBOK一書中對數據治理的定義如下:「數據治理是對數據資產管理行使權力和控制的活動集合(規劃、監控和執行)。數據治理指導其他數據管理職能如何執行,是在數據管理之上的更高一層的規劃和控制」,從中可以看到DMBOK把數據相關的活動劃分為數據治理和數據管理兩部分,其中數據治理重點關注於整體制度的規劃、監控和執行,用於指導和規范數據管理工作的開展。而數據管理工作是針對數據運營和操作所展開的日常活動,例如:數據架構設計,數據標准和數據質量管理等等。
數據治理處於數據管理的核心位置,包括了數據戰略、組織和角色、政策和標准等等,在組織和角色方面,DMBOK提出了數據治理的「三權分立」模式。數據治理包括立法職能(策略和標准)、司法職能(問題管理)和行政職能(管理、服務與合規):數據治理機構的職責包括設置策略、標准、架構和規程,以及解決數據相關問題。數據管理組織的職責包括:管理、監控和執行數據政策、標准和程序,協調、維護和實施數據架構。如圖1所示。
在這個模式中,DMBOK強調數據治理的立法司法和執行之間的獨立和相互制衡,這是數據治理模式三權分立中的關鍵點。DMBOK明確提出了首席數據官、數據治理委員會、數據治理辦公室、數據管理管理專員等概念,對企業數據治理工作的開展起到了很大的推動作用。但是DMBOK對於三權分立模式如何在企業中落地實施著墨不多,這也需要根據企業規模、管理模式方面的特徵來進行具體的落地實施。
2.2 DGI數據治理體系
數據治理研究所(DGI)提出了數據治理的簡單定義和復雜定義。簡單定義為,數據治理是對數據相關事務行使權力並進行決策的一系列活動。復雜定義為,數據治理是關於數據信息的決策權和責任制的體系,並按照共同約定的體系模型落地實施。該模型對數據信息的相關環境、人員、時間和方法、行動都進行嚴格、明確的定義,實現正確的人員在適當時間對合適環境中的相關數據,按照定義的方法採取必要的行動,確保數據滿足規范要求。
在數據治理組織方面,DGI認為一個公司的數據治理組織主要有以下三部分組成:
(1)數據利益相關人:有可能影響數據或者被數據所影響的任何個人和團體,例如:數據架構團隊、業務團隊,DBA等等。
(2)數據治理辦公室:數據治理日常運行的溝通、協調機構,需要推動相關制度的落實、監控日常工作開展情況,推動問題的解決等。
(3)數據管家團隊:負責各自領域數據的管理工作,制定數據的業務規則,採集數據和應用數據來支持工作,並負責自身數據相關質量問題的解決。
2.3 非侵入式數據治理體系
Robert S.Seiner是國際數據治理領域的知名專家,根據對數據治理領域常見痛點的總結,結合自身數據治理經驗的總結,提出了非侵入式數據治理模式《Non-invasive Data governance》,這種模式強調一種自下而上的數據治理方式,和DMBOK、DGI等方面的模式有顯著區別,並在國際上有很大的影響力。
非侵入式數據治理模式的主要特點如下:
(1)數據管理專員是根據當前的工作職責而識別出來的,並對其工作職責進行規范化,而不是讓他感覺到給他增加了新的工作任務。
(2)在現有的策略、流程和方法之上增加數據治理控制的功能,而不是引入新的流程或者方法。
(3)數據治理是統一支持企業范圍內所有的數據集成、風險管理、商業智能和主數據管理等活動,而不是在各自的領域施加不同的控制。
(4)需要讓高層領導者了解這是一種實用的、對現在沒有改變的,高效的數據治理模式,可以協調數據所有者之間的關系,強調把數據當做企業資產進行管理的方式,而不是構建一套獨立的數據治理機制。
(5)非侵入式數據治理模式的關鍵點是高效的溝通,並且能夠充分利用已有的優勢。
在這種模式下,整個數據相關的角色包括操作層的數據管理專員、戰術層的主題域數據管理員、戰術層的數據管理協調員、戰略層的數據治理委員會、戰略層的指導委員會、數據治理團隊、數據治理合作夥伴等七類角色。
這些組織角色的設置和DMBOK中的設置有相似之處,但是在非侵入式數據治理體系中更加強調這些角色的建立是根據其當前工作職責的識別來制定的,不是新增或者重新招聘,這些角色中除了數據治理團隊之外,其他角色都是兼職人員。
3 實踐中的數據治理模式以及職責體系
數據治理相關理論對數據治理相關的職責體系進行了描述,但是企業應該如何構建職責體系沒有涉及,在實際的應用場景中,特別是國內的企事業單位,大部分都是自上而下的方式來構建各自的數據治理職責體系,更多的是參考DAMA數據治理體系中的結構設計,對於非侵入式數據治理體系這種模式國內的實踐案例不多。
數據治理職責體系在國內企業中主要存在兩種類型四種模式:
(1)實體組織類型:獨立數據管理組織模式,IT部門下屬數據管理組織模式。
(2)虛擬組織類型:IT部門牽頭的虛擬數據治理組織,業務部門牽頭的虛擬數據治理組織。
3.1 獨立的實體組織
獨立的數據管理組織模式是把數據業務化的一種方式,針對數據這一企業資產設立獨立的部門來集中進行數據資產的運營和管理。這種模式是完全脫離IT部門再重新建立一個獨立的數據管理部門,統一負責數據架構、數據標准、數據質量和安全等方面的管理,並且對IT部門建設項目中的數據需求、設計和變更進行管理,確保新建項目中能夠滿足公司數據管理方面的要求。同時,有的公司也會把數據分析、數據運營變現的工作放在數據管理部,從而可以把數據管理部門從成本中心轉變為利潤中心,實現從數據到利潤的變現。
這種模式強調數據管理部和技術部之間的平衡,有利於制定獨立的數據管理政策和保證相關政策的落地實施,同時明確了公司數據管理運營許可權的歸屬部門,有利於打破數據的部門壁壘,可以促進數據價值的發揮。同時,由於數據管理部門不僅僅是進行數據管理,同時也可以進行數據分析和變現的工作,業務價值比較容易體現,對於提升自身數據團隊人員的積極也有很大幫助。
3.2 IT下屬的實體組織
由於數據是信息系統的附屬物,隨著信息系統建設的逐漸成熟和穩定,很多公司為把信息化的重點逐漸轉移到數據的管理和分析應用等方面,而信息科技部門往往被認為是最了解數據的部門,因此很多公司會在信息科技部門下面成立獨立的團隊來開展數據管理的工作。這種模式很多的是問題驅動式的,由於數據分析應用過程中面臨的數據問題越來越多,迫切需要進行管理,而數據在公司內部的戰略位置還沒有非常高,所以會選擇在IT部門下設獨立的數據管理部門,在制定數據管理政策和標準的同時,推動數據質量問題的處理,可能還會承擔數據維護的工作。
這種模式下數據管理部的人員出自於信息科技部門,對信息系統就非常熟悉,了解存在的數據問題,和項目人員的溝通交流很方便,相互之間也很容易協作。但是,經常會出現以技術的視角來考慮數據管理的問題,很多數據政策、標準的落地實施常常會妥協於項目實施時間、成本等方面的約束。
3.3 IT牽頭的虛擬組織
由於成立實體的數據管理團隊對組織架構的沖擊比較大,特別是國內的央企和行政事業單位,因此成立虛擬的數據管理組織就成為很多企業採取的模式。信息技術部門往往會極力推動數據治理組織的建設,希望通過公司高層領導的支持,加強公司業務部門在數據管理工作過程中的參與度。而由於IT部門更了解信息系統,更了解技術,理所當然的就成立了由IT部門牽頭的、各業務部門參與的、虛擬的數據治理組織。這種模式會參考DAMA數據治理組織的模式,設置數據治理委員會、數據治理辦公室,業務數據管理員等架構模式,其中數據治理政策的制定、推動實施、監控和協調等主要工作會落實在數據治理辦公室,數據治理辦公室由IT部門負責落實和管理,在IT部門中有可能會指定全職的人員來進行協調和管理的工作,其他的大部分人員都是兼職的。
這種模式的優點就是對組織架構的沖擊比較小,建立成本較小。虛擬組織很容易建立,但是推動數據治理相關制度具體落地執行的難度非常大,業務部門的參與度不高,數據治理的業務價值也不容易體現,因此針對這種模式,建議數據管理部能設置專職的數據管理角色,業務部門的工作職責要能夠落實到崗位描述中。
3.4 業務牽頭的虛擬組織
這種模式是對第三種模式的演進,由於國內很多企業IT部門都是相對弱勢的部門,話語權不強,導致數據治理的制度、標准很難落實,為此,很多企業建立數據治理組織的時候會選擇一個強勢的業務部門牽頭,IT部門配合的模式,例如銀行的風險管理部門、財務部門等等。
這種模式下由於業務部門對於數據的需求和痛點很了解,比較容易體現數據治理的業務價值,同時,由於部門話語權比較強,相關的政策、標准和措施比較容易落地執行。缺點就是牽頭業務部門需要平衡本職業務工作和數據治理工作的投入,同時,由於對信息技術和數據沒有那麼了解,往往需要增加專職的數據管理員。
4 雲南電網數據治理職責體系實踐
雲南電網數據治理組織採用IT牽頭的虛擬組織形式。數據治理委員會職責由網路與信息安全領導小組履行,數據治理管理辦公室職責由網路與信息安全領導小組辦公室履行。在信息部下設置數據治理業務專員,在信息中心下設置數據治理技術專員,其他各業務部門設置數據聯絡員。
4.1 數據治理委員會工作職責
在數據戰略層面:主要負責監督數據戰略和數據政策的實施和執行情況,監控數據風險。
在數據管理層面:主要負責公司數據戰略的目標和策略、數據體系規劃、數據政策制度、數據質量、數據標准、數據需求等數據領域的重大事項審批以及監督評價。
具體職責包括:
(1)對重大數據治理相關事項進行決策,監督數據治理相關工作的開展;
(2)審批公司數據治理工作考評方案,並監督考評結果;
(3)定期向董事會報告公司數據治理相關工作情況。
4.2 數據治理管理辦公室工作職責
數據治理管理辦公室是公司數據治理工作的直接領導與組織部門,負責數據治理相關各領域、各環節的決策支持、監督執行和組織落實。其主要職責包括落實數據治理決策層分配的工作,制定並審議數據治理相關工作流程和各項制度,組織推進公司各部門及基層單位開展數據治理工作。具體職責包括:
(1)審議數據治理工作相關的制度和細則及工作流程;
(2)指導數據標準的編制、執行、變更、復審的協調、決策等管理工作,審查數據標准相關方案,審議數據標准相關的重大事項等;
(3)定期向數據治理決策層匯報公司數據治理工作情況;
(4)負責審議並指導數據治理執行層工作並聽取匯報;
(5)指導數據治理工作考評方案制定,並檢查數據治理工作評結果。
『捌』 如何開展企業ERP數據治理工作
在企業ERP數據治理這個范疇上,我們應該首先解決的是企業對其數據的了解和認知。
由於IT系統數據模型反映了應用關系型資料庫在數據存儲及數據結構,是元數據的主要組成部分。在今天關系型資料庫仍然大行其道的當下,一種清晰並且與系統應用實踐高度一致的數據模型可以促進了各種應用數據的管理、基於角色的有價值數據資產訪問以及持續的數據集成。並且強化了元數據管理,使組織理解它們所擁有的數據,以及數據與業務流程之間的關系,不管數據來自於什麼數據,什麼樣的產品平台以及任何地方。
因此,數據模型梳理,也正是傳統企業必需一個自下而上的數據治理方法之一。
經過完整數據模型梳理可以預期可以達到什麼樣的效果:
●克服黑暗數據現象,通過清晰的元數據和數據模型管理讓企業可以真正理解和運用自身的數據,並不斷擴大應用和分析數據的范圍和規模。
●明確數據含義,了解數據訪問與業務流程之間的關系,幫助企業業務使用者(不僅包括IT)可以使用數據和應用數據幫助他們更好完成工作,推動全面數據化運營。
●連接和映射更多數據,充分發掘現有的數據之間的關系,擴大數據規模效應,讓數據可以充分發揮其作用和價值。
●為其他的數據資產管理活動,包括數據質量、數據生命周期管理、數據操作、數據安全、主數據管理等提供一個高質量的基礎。
其實,在企業數據倉庫領域中,元數據管理正是用來解決這個問題的但由於種種原因,實際上傳統企業中元數據管理也不盡如人意,出現元數據與實際環境嚴重脫節,不能反映其真實數據架構等現象。
『玖』 金融數據治理的問題與對策
(1)缺少數據治理企業文化
銀行數據治理工作不是個別部門或少數人員能夠妥善完成的,而是需要各部門之間、各層級之間的相互支持與協作,尤其需要加強科技部門與業務部門之間的合作。因此,在數據資產被高度認可的今天,數據治理不僅需要作為銀行的一項職能工作在企業內貫徹執行,而應該建立一種以數據資產為導向的企業文化,將數據治理與信息科技治理、公司治理有機地結合起來。
(2)基礎數據質量的改進刻不容緩
數據質量的改進是一項長期的任務,需要從文化、組織、制度、流程和質量檢查管理工具等多個層面持續改進,並依靠數據認責機制,確保數據質量問題能夠得以快速有效的解決;數據不一致需要通過推進數據標准化進行系統問協調,也需要建設統一的可信數據源。
(3)沒有完善的組織和制度,缺乏有效的管理機制
目前使用數據的部門由於具有明確的、迫切的數據需求,同時面臨著內外部的多種壓力,成為處理問題的主要推動者,沒有一個統一的數據管理部門,當問題涉及跨系統、跨條線時,溝通成本較高、協調難度也較大,問題難以得到徹底解決。
健全的數據治理組織機制是全面開展數據治理工作的基礎。由專業的業務和技術人員組成的數據治理組織將承擔數據管理者的職責,負責落實全行數據治理的工作,同時建立決策、溝通、監控、考核的機制,創造全行數據治理文化,有效地解決銀行數據的責、權、利的問題。
(4)缺乏完善的系統支撐和技術手段
銀行系統數據量龐大,如果數據治理工作不依靠技術手段,沒有相應的平台工具支撐,僅依靠手工處理,難以將數據治理工作做好,因此,需要先進的技術手段、配套的系統支撐數據治理工具高效有序的開展。
億信華辰在數據治理領域也持續深耕,從數據質量管理平台、元數據管理平台,到發布智能數據治理平台-睿治,實現了數據治理全場景覆蓋,包含九大核心模塊:元數據、數據標准、數據質量、主數據、數據資產、數據安全、數據交換、數據處理、數據生命周期等,所有模塊可自由組合,並支持本地或雲上使用,全面滿足客戶各類治理需求。